façade engineering

creating iconic façades
impeccable credentials

Our multidisciplinary approach and global bank of knowledge in façade engineering consistently deliver exceptional solutions that are original, practical and budget-conscious.
Meinhardt is one of few multidisciplinary consultancies in the world. Since 1955, we have led the way in innovative and highly buildable designs.

In the growing field of façade engineering, we have a formidable track record of over 20 years of specialised experience across more than 1,300 iconic projects.

Our clients can leverage our full suite of integrated capabilities across engineering, infrastructure and project management, and access the best expertise available within the Meinhardt Group. The benefit is a holistic delivery that is totally committed to high quality, cost-effective and sustainable designs and solutions.

Meinhardt’s combination of global resources and strong local presence ensure successful project delivery by our highly-qualified specialists.
Our emphasis on being actively involved early in the development process allows our clients greater scope to customise façade designs and solutions to their particular needs.
All members of our façade engineering team are professionally qualified in an engineering or architectural discipline and fully appreciate the importance of consistent design thinking across all touch points of the project.

A creative and commercially successful building envelope requires expert knowledge and an innovative mind. Meinhardt consistently delivers original design solutions, and is proud to have developed the first unitised curtain wall with flush sash frames which is now a common feature in other buildings, and just one of the many innovations to our credit.

At the same time, we are also about real-world solutions that are practical and on-budget. We understand the intricacies of cross-collaborations and our experience in working with international architects and contractors on large scale and turnkey projects is second to none.

01 Raffles City, Chengdu, China
02 Felda Tower, Kuala Lumpur, Malaysia
03 Zuellig Building, Manila, Philippines

150+
More than 150 façade professionals at our disposal worldwide, one of the key global players in a growing discipline

25 million
Designed over 25 million square metres and 50,000 floors of façade area

500
We work with over 500 clients and architects in successful relationships

30+
One global company with over 30 offices worldwide
capabilities

one source, all services

From design to construction and post-completion assessment, our team provides an integrated approach to all aspects of façade engineering.
Façade Design and Engineering

Our team combines design, engineering, fabrication and installation expertise to address all aspects of façade design and construction. We provide a full range of services for all types of building envelopes from conventional materials like curtain walls to modern designs using glass as a structure, tensioned fabrics and photovoltaics:

• Concept design
• Detailed design
• Tendering
• System design and engineering
• Design and engineering certification
• Materials and systems testing
• Fabrication and assembly
• Site installation

Façade Remedial and Forensic

We offer façade remedial and forensic services and work closely with building owners, property managers, contractors and insurance companies to deal with performance issues. As an independent third-party assessor, our services include:

• Defect surveys
• Cost studies for repair and replacement
• Remedial works proposals
• Tendering and contract administration
• Due diligence reports
• Expert witness testimony

Building Maintenance Unit Design

Our façade access solutions go beyond routine cleaning to encompass the long-term strategy for façade maintenance and replacement of façade elements. We assist building owners and architects in the successful design and integration of interior and exterior building maintenance systems, covering:

• BMU system selection
• BMU structural analysis
• BMU supports to buildings
• Façade restraints and track design
• Building services provisions
• Cleaning cycle calculations
• BMU inspections and certification
• BMU system audits

Environmentally Sustainable Design

We evaluate the interaction of the energy systems to construction materials and design methods to achieve exceptional environmental outcomes. Our ESD approach has proven to yield reduced life cycle costs, enhanced building value and profitability, improved health and community benefits as well as positive environmental impact. Our services include:

• Sustainable master planning
• Green building design
• Green retrofitting
• Green rating system certification and project administration
• Total Building Performance (TBP)
Growing pressure on limited resources has turned ESD into a key consideration right from the design and conceptual stage.
Governments around the world are also encouraging green retrofitting, and see the importance of managing climate change through a sustainable built environment.

Building envelopes play one of the most important roles in sustainable built environment. Our sustainable approach has benefited our clients and the local communities through:

- reduced carbon footprint
- energy savings from use of green and renewable energy technologies
- lower operational costs in the long run by managing lifecycle costs from the start
- higher building performance
- improved occupant comfort
- healthier building environment
- responsible sourcing of materials

Within the Meinhardt Group, we have a dedicated team of ESD experts who are focused on delivering sustainable outcomes and are committed to integrating green solutions and technologies during the design and construction phases.

Close project collaboration is maintained between the Façade Engineering, ESD, MEP and Lighting Design teams to create environmentally responsive building envelopes.

01 Computational Fluid Dynamics (CFD) to determine air flow in and around buildings
02 Sun path diagram for shadow analysis
03 Section details of light shelf and sunshade
04 Kaoshiung Port and Cruise Service Center, Taiwan
Opposite page 4G11, Kuala Lumpur, Malaysia
China World Trade Center
Beijing, China
Standing at 330 metres, the China World Trade Center consists of a hotel and office tower and a six-storey retail podium. It is currently the tallest building in Beijing, rising 80 floors above ground.

The tower façade features a thermally-broken, unitised curtain wall system with low emissivity insulated glazed units, shaded by full height external vertical glass fins. Because the tower tapers in as it rises, the curtain wall undulates on alternating floors to create a micro-texture to the overall façade.

The external glass fins cantilever 600 millimetres from the glazed façade, providing shading and housing LED lighting strips along the outer edges for night time illumination.

The retail podium's signature façade is 22 metres high and 100 metres wide, composed of a highly transparent, yet energy efficient retail glass wall, utilising low iron, low emissivity insulated glass units. These are supported only by stainless steel cables running from the ground level to the roof. This structure is the first of its kind in Beijing.

Façade services

- Tall building façade engineering
- Glass wall design and engineering
- Stone cladding design and engineering
- Building maintenance unit design

<table>
<thead>
<tr>
<th>112,000</th>
<th>285,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>square metres total façade area which is equivalent to 16 standard football fields</td>
<td>square metres floor area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>83</th>
<th>50+</th>
</tr>
</thead>
<tbody>
<tr>
<td>stories (including basement)</td>
<td>placed end-to-end external glass fins would stretch over 50 kilometres in length</td>
</tr>
</tbody>
</table>
The Dubai Mall is a centrepiece of downtown Burj Dubai. The 500-acre mega-development by Emaar Properties is described as the new heart of the city.

Located next to the iconic Burj Khalifa, the tallest tower in the world, the Dubai Mall is one of the largest malls in the world and is about the size of 150 football fields. There are over 1,200 stores, offering a retail mix unmatched by any other mall in the world.

The mall’s façade comprises over two kilometres of bespoke curtain walling and precast panel systems. The roof was considered as the fifth elevation due to its proximity to the Burj Khalifa. It required a similar level of detailing to the façade. For this reason, multiple materials and systems are utilised from skylights, standing seam, cladding, tensile fabric to hydraulic retractable roof structures.

Intelligent, high-performance glazing systems form the backbone of the mall’s exterior while patterned and backlit glass panels are chosen for the entrances to support the lighting schemes.

The Dubai Mall has the world’s largest acid-etched, precast façade which provides a rustic limestone appearance without the use of a paint-system. Its highly effective and long-lasting properties require minimal maintenance.

Completed in 2008, Meinhardt provided civil, structural, mechanical, electrical, BMU and facade engineering services.
Over two kilometres of curtain wall, precast and glass reinforced concrete panels in total.

Over 65 different skylights and roof structures.

First bi-fold curtain wall system installed in the Middle East at 0.25 kilometres long.

Largest three-dimensional precast façade panel in the world at 12 x 5 x 5 metres.

Photographs courtesy of DP Architects
Pearl River Tower
Guangzhou, China

Designed by Gordon Gill in collaboration with Adrian Smith while both were at Skidmore, Owings & Merrill, Pearl River Tower is one of the most energy efficient super skyscrapers ever built.

The 309-metre tall, 2.2 million-square foot Pearl River Tower boasts of a high performance façade that generates energy for the tower via building-integrated photovoltaics and a subtly sculpted form that drives wind into turbines at accelerated speeds. Its aerodynamic form funnels the wind at high velocity through to four turbine inlets on the façade located on the 25/26th and 49/50th floors.

These rapid winds will in turn power the integral wind turbines to generate energy for the building’s heating, ventilation and air conditioning systems. A stick façade system is devised around the wind turbine generator tunnel.

This super skyscraper contains several other exteriors, including a double-skin curtain wall that is embedded with solar panels to convert the sun’s energy into electricity, and photoelectric sunshades to maximise the natural daylighting.

Façade services
• Curtain wall design and engineering
• Glass wall design and engineering
World Trade Centre II
Jakarta, Indonesia

World Trade Centre II is one of the most iconic office buildings in the central business district of Jakarta.

With a total floor area of approximately 60,000 square metres, this prestigious Grade A office tower is 30 storeys high and reaches a height of 160 metres, including a 25-metre tall architectural crown.

There is also an existing five-storey basement which was constructed circa 1997 and this has been integrated to the new construction.

One of the few developments in Jakarta designed to comply with the Green Mark criteria of Singapore, the building’s main façade system consists of a unitised curtain wall with high performance, low-E coated insulated glass. Light weight and translucent glass panels are integrated within the curtain wall, offering varying degrees of light transmission and visual privacy for the occupants.

A high-end and quality building was successfully delivered to the client within budget and a scheduled timeframe.

Façade services
- Curtain wall design and engineering
- Glass wall design and engineering
Ocean Heights is currently among the top five tallest residential buildings in the world.

The 83-storey, 310-metre towering masterpiece is strategically located at the entrance of Dubai Marina, overlooking magnificent vistas on all sides. It houses 608 luxury apartments.

Ocean Heights is considered a ‘super slender’ building with an aspect ratio of 9.2 : 1.

The design was achieved by twisting the floor plate at every level to create the curved elevation.

As it rises, the tower’s floor plates reduce in size, allowing the rotation to become even more pronounced.

Meinhardt designed what the industry would term as “true-warped” type unitised curtain wall system through cold-bending of glazed panels, to achieve the distinctive silhouette. Engineering the façade system involved a much more rigorous set of design strategies compared to conventional unitised curtain wall systems.

Façade services
- Glass wall design and engineering
- Stone cladding design and engineering
The Meydan Racecourse is an iconic development in Dubai spanning 67 million square feet. It comprises 1,750-metre all-weather Tapeta surface track and a 2,400-metre turf course.

The grandstand can accommodate 60,000 spectators and incorporates the world’s first five-star trackside hotel with 285 rooms, two race tracks, restaurants, a racing museum and 72 corporate suites for entertaining throughout the year.

Twelve-metre glass fins are used to support the monolithic glass façade. This gives the effect of a minimally supported façade with extremely high transparency.

The VIP lounge is located on the roof of the main terrace and is designed as a free form structure. It is constructed from custom steel profiles with glass cassette units fixed to the steel frame.

Façade service
- Glass wall design and engineering
Based on the idea of ‘Cybertecture’, The Capital merges evolutionary concepts with sustainable designs and advanced building systems.

The exterior of this high-tech office building comprises a protruding glass Cybertecture Egg.

The structure of the Cybertecture Egg uses a diagrid exo-skeleton which creates a rigid structural system, allowing for large column-free floor plates and high space flexibility. As the Egg does not have a flat surface, an exterior cleaning system is essential. The monorail is installed on the 13th floor, underneath the slab, and moves around the entire egg diagrid façade and window wall system.

In all, the façade consists of 22,600 square metres of unitized curtain wall, 3,750 square metres of egg diagrid semi-unitized system, 1,000 square metres of louvres system, stick curtain wall system and swing doors.

Photovoltaic cells are integrated within the glass façade to provide an alternative electricity source. The building’s glazing has variable fritting and tones based on the sun orientation as well as variable shading and tinting.

key projects
The Capital
Mumbai, India

Façade services
- Glass wall design and engineering
- Building maintenance unit design
Modelled after a lotus, Vietnam's national flower, this 68-storey, 260-metre tall office tower has a six-storey retail podium.

As part of the tower’s lotus flower image, one side of the tower protrudes out as the helipad.

Constructed from more than 250 tons of structural steel and requiring 4,000 ultra-strong bolts to hold it together, the helipad is cantilevered 22 metres out from the main structure.

The unconventional building shape is such that the perimeter tapers inward at the lower 20 floors.

The building’s curvature means no two floors are the same.

Each of the 6,000 sleek glass panels is individually cut to unique specifications because each floor is different from the next.

Bitexco Financial Tower
Ho Chi Minh City, Vietnam

Façade services
- Tall building façade engineering
- Curtain wall design and engineering
- Building maintenance unit design
Located in one of Shanghai’s most well-known shopping districts, this project is a 66-storey office building (Tower 1) designed with a sloped metal roof feature. There are altogether 78,000 square metres of Grade A office space and five levels of luxury shopping at the podium fronting Nanjing Xi Lu.

Architecturally, the building’s curved volume spirals from the base in an ascending fashion to the top. Its main façade system is characterised by a unitised curtain wall and aluminium cladding.

The east side of Tower 1 is fitted with flat-glass cladding and a minimal amount of aluminium to play up the contrast against the more sculptural walls at the secondary tower. One of the key challenges in the project was the integration of glass cleaning system (BMU) with its curved roof structures.

Plaza 66
Shanghai, China

Façade services

- Curtain wall design and engineering
- Glass wall design and engineering
- Building maintenance unit design
Costing over S$6.5 billion, the Resorts World Sentosa is an integrated resort taking pride of place on a 49-hectare site at on the northern shore of Singapore’s Sentosa island.

This integrated resort brings together a collection of six hotels, a casino, the world’s largest Oceanarium and the region’s first Universal Studios theme park.

Meinhardt deployed its expertise for the façade and roof designs for the entire project.

The works cover stone cladding, window walls, high performance sliding doors, aluminum roofing with built-in green features, glass walls and shopfronts, roof slate tiles, glass skylights, and over 25,000 square metres of ETFE and PTFE canopies. The cooling system integrated within these canopies contributes to energy savings of 2.9 million kWh per year.

The team was also involved in the engineering of the themed façades at the Universal Studios. Set on an enormous scale, a wide variety of materials from precast concrete to NALC panels, metal cladding, GFRC (Glass Fiber Reinforced Concrete) and GFRP (Glass Fiber Reinforced Plastic) were utilised.

For its exemplary sustainable designs, the Resorts World Sentosa won the Building Construction Authority’s Green Mark District Gold Plus Award in 2009.
The Suvarnabhumi Airport in Bangkok is the world’s 4th largest single-building airport terminal at 563,000 square metres, and handles more than 45 million passengers a year.

The main terminal roof is designed with structural elements and bays placed in a cantilevered wavelike form. This canopy comprises eight super-truss girders with a central span of 126 metres and two cantilevering ends of 42 metres long. The entire roof is supported by 16 frame-type steel columns.

Its glass wall utilises a cable truss system. Internally, the concourse enclosure consists of five-pin arch truss girders with an alternating system of glazed façades and a translucent fabric membrane set-up, which is spanned to bridge the 27-metre spacing between the glass façades.

The low-E coated glass façade system and the three layer-translucent membrane helps to mediate between the tropical climate and interior, reduce the noise transmission, and optimise the daylight into building.

Facade service
- Independent design checking

Photographs courtesy of Rainer Viertlbock
At over A$200 million, the Swanston Academic Building is the largest construction project ever undertaken by the Royal Melbourne Institute of Technology (RMIT).

The 35,000-square metre, 11-storey building contains highly advanced, sustainable teaching and learning facilities.

It has a visually stunning building envelope with no straight walls around the perimeter.

The high-performance façade includes external angular shaped sunshades, internal blinds and double-glazed units.

Key features include balconies from the two-storey cantilevered student social space overhanging Swanston Street to a further nine, double-height student portals for informal study and collaboration.

Façade service
- Curtain wall and cladding design and engineering
Meinhardt solved a highly complex, technically challenging scenario to deliver a new, more efficient bespoke BMU system.

Working in conjunction with the structural engineer, to ensure the existing steel frame and structure could handle the design proposal, a solution was developed that could effectively travel the steep slopes of the building and manage the constrained space at the corners through the clever inclusion of turning tables.

Meinhardt provided a full turnkey service for the design and installation of the new BMU and the supervision of the removal of the existing system.

Due to our in depth knowledge of the building and our technical capability, the client asked us to extend our role to Project Construction Managers.
280 Adelaide Street
Brisbane, Australia

This site is situated adjacent to “Golden Triangle” office precinct, located on the northern end of Adelaide Street between Creek and Wharf Street. The building has recently concluded a considerable refurbishment program, encompassing aesthetic improvement to the building's facade and foyer and more notably activating the retail on the ground floor.

Meinhardt provided a holistic façade and BMU design and engineering package for the tower, which saw the replacement of the entire glass façade.

The scope for the BMU element includes façade access systems to all the external elevations of the building together with storage provisions and façade interfaces. In addition to this provision for safety line systems to the roof, skylights and projections is included in the scope of services.

Façade service
- Total package of Façade and BMU
- Renovation project – monitored by Brisbane office
Williamstown Library is one of the largest stone cladding projects ever to be seen in the State.

The façade solution designed by Meinhardt features bluestone installed in an unusual vertical orientation to meet the architect’s design aspirations.

Meinhardt imported a generic system new to Australia, which delivers better architectural performance - as the clips are not visible – much faster construction and enhanced technical capabilities.

Façade service

• We are currently managing the construction phase activities of the project.
St James Redevelopment
Melbourne, Australia

The site comprises an 'L' shaped building of 6 levels and a 28 storey tower.

The extensive renovation and refurbishment project has seen the complete internal fit-out demolition of the 6-storey building and the addition of 2 levels above. A new double glazed façade brings the building back to life and a single glazed steel framed shopfront façade wraps around the perimeters of both buildings bringing the development cohesively together.

The new frontage includes architectural steel beams, glass operable walls, glass canopies with perforated sheet soffits and cladded bullnose canopies, while the tower features a dynamic, cantilevered glass box

Façade service
- Curtain wall and cladding design and engineering
- Steel shopfront design and engineering
- Glass canopy design and engineering
Meinhardt Façade worldwide

Australia

Melbourne
Level 12
501 Swanston Street
Melbourne, Victoria 3000
Australia
mfacade@vic.meinhardt.com.au
T: +61 3 8676 1200
F: +61 3 8676 1201

Sydney
Level 4
66 Clarence Street
Sydney, New South Wales 2000
Australia
mfacade@nsw.meinhardt.com.au
T: +61 2 9699 3088
F: +61 2 9319 7508

Brisbane
Level 8
500 Queen Street
Queensland 4000
Australia
T: +61 7 3018 5000
F: +61 7 3018 5099

China

Hong Kong
4/F Wah Ming Centre
421 Queen’s Rd West
Hong Kong
mfacade@meinhardt.com.hk
T: +852 2858 0738
F: +852 2858 1326

Beijing
23F Hua Teng Plaza
No. 302, Jia, Jinsong Zone 3
Chaoyang District
Beijing 100021, China
mfacade@bj.meinhardt.com.cn
T: +8610 8599 9446
F: +8610 8599 9446

Shanghai
6/F Block 3A
299 Long Chao Road
Shanghai, China
mfacade@sh.meinhardt.com.cn
T: +86 21 6466 8375
F: +86 21 5466 4093

Shenzhen
Room 304, Blk B Union Square
5022 Binhe Road
Shenzhen 518033, China
T: +86 21 6466 8375
F: +86 755 8297 8456

India

Chennai
No. 22 Anna Salai
1st Floor, Standard House
Little Mount Road, Saidapet
Chennai 600015, India
mfacade@mfacade.in
T: +91 44 2235 1333
F: +91 44 2235 1332

Indonesia

Jakarta
Grha Tirtadi 3/F
Jalan Raden Saleh No. 20
Jakarta 10430, Indonesia
indo@meinhardt.co.id
T: +62 21 392 9911
F: +62 21 392 5995

Malaysia

Kuala Lumpur
Suite 17.02, Level 17
Amoda Building
Jalan Imbi
55100 Kuala Lumpur, Malaysia
T: +60 3 2710 9488
F: +60 3 2711 2990

Middle East

Dubai
Gold & Diamond Park
Building 4 Unit 130
Sheikh Zayed Road
Dubai, U.A.E
info@mfacade.ae
T: +971 4 380 9422
F: +971 4 323 7592

Philippines

Manila
25/F Chatham House
116 Valero cor V.A.
Rufino Sts, Salcedo Village
Makati City, 1227
Philippines
T: +632 887 1391
F: +632 887 1172

Singapore

Singapore
168 Jalan Bukit Merah
#05-01 Surbana One
Singapore 150168
mfacade@meinhardt.com.sg
T: +65 6238 9730
F: +65 6736 1542

Thailand

Bangkok
15/F-16/F, Thanapoom Tower
1550 New Petchburi Road
Makkasan, Ratchtevee
Bangkok 10400
Thailand
T: +66 2 207 0568
F: +66 2 207 0574

Group Capabilities

Infrastructure & Environment
Structures
MEP
Project Management
Planning & Urban Development
Façade Engineering
Environmentally Sustainable Design
Specialist and Architectural Lighting
Fire Performance Engineering
Integrated Design Management
Mission Critical Facility Design